首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6340篇
  免费   580篇
  国内免费   3398篇
化学   9849篇
晶体学   38篇
力学   21篇
综合类   85篇
数学   8篇
物理学   317篇
  2024年   8篇
  2023年   110篇
  2022年   192篇
  2021年   246篇
  2020年   339篇
  2019年   363篇
  2018年   319篇
  2017年   307篇
  2016年   308篇
  2015年   299篇
  2014年   425篇
  2013年   594篇
  2012年   398篇
  2011年   477篇
  2010年   393篇
  2009年   365篇
  2008年   451篇
  2007年   451篇
  2006年   413篇
  2005年   415篇
  2004年   444篇
  2003年   387篇
  2002年   298篇
  2001年   301篇
  2000年   305篇
  1999年   217篇
  1998年   211篇
  1997年   224篇
  1996年   166篇
  1995年   190篇
  1994年   152篇
  1993年   193篇
  1992年   114篇
  1991年   62篇
  1990年   64篇
  1989年   42篇
  1988年   28篇
  1987年   16篇
  1986年   7篇
  1985年   8篇
  1984年   6篇
  1983年   5篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1959年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
The designs of efficient and inexpensive Pt-based catalysts for methanol oxidation reaction (MOR) are essential to boost the commercialization of direct methanol fuel cells. Here, the highly catalytic performance PtFe alloys supported on multiwalled carbon nanotubes (MWCNTs) decorating nitrogen-doped carbon (NC) have been successfully prepared via co-engineering of the surface composition and electronic structure. The Pt1Fe3@NC/MWCNTs catalyst with moderate Fe3+ feeding content (0.86 mA/mgPt) exhibits 2.26-fold enhancement in MOR mass activity compared to pristine Pt/C catalyst (0.38 mA/mgPt). Furthermore, the CO oxidation initial potential of Pt1Fe3@NC/MWCNTs catalyst is lower relative to Pt/C catalyst (0.71 V and 0.80 V). Benefited from the optimal surface compositions, the anti-corrosion ability of MWCNT, strong electron interaction between PtFe alloys and MWCNTs and the N-doped carbon (NC) layer, the Pt1Fe3@NC/MWCNTs catalyst presents an improved MOR performance and anti-CO poisoning ability. This study would open up new perspective for designing efficient electrocatalysts for the DMFCs field.  相似文献   
2.
Wacker oxidation is an industry-adopted process to transform olefins into value-added epoxides and carbonyls. However, traditional Wacker oxidation involves the use of homogeneous palladium and copper catalysts for the olefin addition and reductive elimination. Here, we demonstrated an ultrahigh loading Cu single atom catalyst(14% Cu, mass fraction) for the palladium-free Wacker oxidation of 4-vinylanisole into the corresponding ketone with N-methylhydroxylamine hydrochloride as an additive under mild conditions. Mechanistic studies by 18O and deuterium isotope labelling revealed a hydrogen shift mechanism in this palladium-free process using N-methylhydroxylamine hydrochloride as the oxygen source. The reaction scope can be further extended to Kucherov oxidation. Our study paves the way to replace noble metal catalysts in the traditional homogeneous processes with single atom catalysts.  相似文献   
3.
Understanding the thermal aggregation behavior of metal atoms is important for the synthesis of supported metal clusters. Here, derived from a metal–organic framework encapsulating a trinuclear FeIII2FeII complex (denoted as Fe3) within the channels, a well-defined nitrogen-doped carbon layer is fabricated as an ideal support for stabilizing the generated iron nanoclusters. Atomic replacement of FeII by other metal(II) ions (e.g., ZnII/CoII) via synthesizing isostructural trinuclear-complex precursors (Fe2Zn/Fe2Co), namely the “heteroatom modulator approach”, is inhibiting the aggregation of Fe atoms toward nanoclusters with formation of a stable iron dimer in an optimal metal–nitrogen moiety, clearly identified by direct transmission electron microscopy and X-ray absorption fine structure analysis. The supported iron dimer, serving as cooperative metal–metal site, acts as efficient oxygen evolution catalyst. Our findings offer an atomic insight to guide the future design of ultrasmall metal clusters bearing outstanding catalytic capabilities.  相似文献   
4.
A ruthenium-catalyzed formal anti-Markovnikov hydroamination of allylic alcohols for the synthesis of chiral γ-amino alcohols is presented. Proceeding via an asymmetric hydrogen-borrowing process, the catalysis allows racemic secondary allylic alcohols to react with various amines, affording enantiomerically enriched chiral γ-amino alcohols with broad substrate scope and excellent enantioselectivities (68 examples, up to >99 % ee).  相似文献   
5.
Palladium nanoparticle‐incorporated metal–organic framework MIL‐101 (Pd/MIL‐101) was successfully synthesized and characterized using X‐ray diffraction, nitrogen physisorption, X‐ray photoelectron, UV–visible and infrared spectroscopies, and transmission electron microscopy. The characterization techniques confirmed high porosity and high surface area of MIL‐101 and high stability of nano‐size palladium particles. Pd/MIL‐101 nanocomposite was investigated for the Sonogashira cross‐coupling reaction of aryl and heteroaryl bromides with various alkynes under copper‐free conditions. The reusability of the catalyst was tested for up to four cycles without any significant loss in catalytic activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
6.
Oxidation catalysis is used to increase the performance of hydrogen peroxide in laundry bleach applications. Bleach catalysts provide cost‐effective, energy‐saving and environmentally friendly bleach systems yielding perfect stain removal at lower temperatures. This comparative study is based on the synthesis of bis[bis(salicylhydrazonephenoxy)manganese(III)] phthalocyaninatozinc(II) ( 2 ), bis[bis(salicylhydrazonephenoxy)cobalt(III)] phthalocyaninatozinc(II) ( 3 ) and bis[bis(salicylhydrazonephenoxy)iron(III)] phthalocyaninatozinc(II) ( 4 ) as tri‐nuclear complexes consisting of two Schiff base complexes substituting a zinc phthalocyanine. Complexion on the periphery to obtain complexes 2 , 3 , 4 was performed through the reaction of a Schiff base‐substituted phthalocyanine using MnCl2?4H2O, CoCl2?6H2O or FeCl3?6H2O salts in basic condition in dimethylformamide. Fourier transform infrared, 1H NMR, 13C NMR, UV–visible, inductively coupled plasma optical emission and mass spectra were applied to characterize the prepared compounds. The bleach performances of the three phthalocyanine compounds 2 , 3 , 4 were examined by the degradation of morin as hydrophilic dye. The degradation progress in the presence of catalysts 2 , 3 , 4 /H2O2 combination in aqueous solution was investigated using an online spectrophotometric method. It was found that the catalysts 2 , 3 , 4 exhibited better bleaching performance at 25 °C than tetraactylethylethylenediamine as bleach activator used in powder detergent formulations for stain removal. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
7.
The paper presents the synthesis and catalytic activity of CuFe2O4 nanoparticles. The CuFe2O4 nanoparticles have been prepared by sonochemical route under low power ultrasonic irradiation (UI) and using silent stirring at room temperature only (ST) along with co-precipitation method, without using any additive/capping agent. The synthesized magnetic nanoparticles were successfully used and compared for the synthesis of 4H-chromene-3-carbonitrile derivatives. The CuFe2O4 nanoparticles obtained by sonochemical route exhibit higher catalytic activity because of small size (0.5–5 nm), high surface area (214.55 m2/g), high thermal stability up to 700 °C, recyclability and reusability due to its magnetic characteristics than CuFe2O4 nanoparticles obtained by room temperature silent stirring. The synthesized CuFe2O4 nanoparticles were characterized by FT-IR, SEM–EDX, HR-TEM, XRD, TGA/DTA/DTG, BET, VSM techniques. The present method is of great interest due to its salient features such as environmentally compatible, efficient, short reaction time, chemoselectivity, high yield, cheap, moisture insensitive, green and recyclable catalyst which make it sustainable protocol.  相似文献   
8.
Highly position selective alkylations of N-alkylindoles at C7-positions have been enabled by cationic zirconium complexes. The strategy provides a straightforward access to install alkyl groups at C7-positions of indoles without a complex directing group. Mechanistic studies provided support for the importance of Brønsted acids in the catalytic manifold.  相似文献   
9.
Al-pillared clays supported rare earths (RE/Al-PILC) are prepared and used as supports of palladium catalysts for deep oxidation of low concentrations of benzene (130-160 ppm). The supports and catalysts are characterized by X-ray powder diffraction (XRD), FT-IR, BET, transmission electron microscopy (TEM) and temperature-programmed reduction (H2-TPR). The results show that Al-pillaring results in a strong increase in the basal spacing (d0 0 1) from about 1.2 to 1.8 nm, and an increase in the BET surface area from 63.6 (±3.2) to 238.8 (±11.9) m2/g. Activity tests of deep oxidation of low concentration benzene show catalysts supported on Al-PILC and RE/Al-PILC are obviously more active than that on raw clay. Pd/6% Ce/Al-PILC, in particular, can catalyze the complete oxidation of low concentration benzene at a temperature as low as about 290 °C.  相似文献   
10.
A series of (di)picolinic acids and their derivates are investigated as novel complexing tridentate or bidentate ligands in the iron‐mediated reverse atom transfer radical polymerization of methyl methacrylate in N,N‐dimethylformamide at 100 °C with 2,2′‐azobisisobutyrontrile as an initiator. The polymerization rates and polydispersity indices (1.32–1.8) of the resulting polymers are dependent on the structures of the ligands employed. Different iron complexes may be involved in iron‐mediated reverse atom transfer radical polymerization, depending on the type of acid used. 1H NMR spectroscopy has been used to study the structure of the resulting polymers. Chain‐extension reactions have been performed to further confirm the living nature of this catalytic system. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2912–2921, 2006  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号